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Abstract

A strain energy density function for isotropic higher order elasticity is developed. The strain energy density is
decomposed into a compressibility component being a generalization of the Simo and Pister [Comput. Methods Appl.
Mech. Eng. 46, 201-215] proposal for neo-Hookean elasticity, and an incompressibility component being the gen-
eralized Mooney expression. A general constitutive relationship for the second Piola Kirchhoff and Eulerian stress
tensor for higher order elasticity is then derived from the proposed strain energy density. Constitutive relationships for
the principal Lagrangian and Eulerian physical stresses in terms of the principal stretches are also developed. Pre-
dictions based on the proposed strain energy density are compared with experimental results including incompressible
rubber-like materials under homogeneous strain, compressible materials under high hydrostatic compression, and
measured volume changes in rubber and foam under large deformation uniaxial tension.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

There are several material groups such as elastomers, polymers, foams and biological tissues which can
undergo large deformations without permanent set, and hence exhibit large nonlinear elastic behaviour.
The nonlinear elastic behaviour under load or prescribed displacement can be modelled using either a
physical description of the molecular interplay through theories such as the classical Gaussian theory, slip-
link or macromolecular network theories as discussed by Treloar (1975), Boyce and Arruda (2000), Bischoff
et al. (2000) and Meissner and Matéjka (2002), or by a phenomenological approach. The strain energy
expression formulated using a molecular approach is often complex and material specific. In the phe-
nomenological approach, material is treated as a continuum and a strain energy density is postulated,
usually in terms of the deformation invariants, generally strain or stretch invariants. Several material
parameters are usually needed to reflect the nonlinearity in the load stretch relationships. Typically for
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a rubber-like material under tension, the load stretch response will display an S-shaped behaviour with
stiffening at large stretches. The number of material parameters needed will be related to the level of
nonlinearity, and whether one loading regime (for example uniaxial tension) or a more general loading state
is being modelled.

There are many proposed strain energy density expressions in the literature. These can be grouped into
those dealing with incompressible materials and those extended to deal with compressibility. They can
further be split depending on the material group being modelled, whether for example the material under
consideration is a rubber, polymer, foam or biological tissue. They can also be grouped on whether or not
they satisfy the Valanis—Landel hypothesis (see Ogden, 1997; Treloar, 1975). The most widely cited strain
energy expressions are the Mooney-Rivlin, Ogden (1997) and Blatz and Ko (1962) models. Descriptions of
many of the proposed models can be founded in Treloar (1975), Beatty (1987), Ogden (1997), Lambert-
Diani and Rey (1999), El-Lawindy and El-Guiziri (2000), Boyce and Arruda (2000), Bischoff et al. (2000),
Bradley et al. (2001), and Meissner and gpirkova (2002). A good phenomenological model is one that can
give good comparison with experimental results for any stress state with one set of material parameters,
gives stable results for all loadings, is applicable to a wide range of materials, and can be used to derive the
constitutive relationship for a chosen stress tensor in general coordinates. Attard (2003) proposed a strain
energy density for isotropic hyperelastic materials which consisted of the general Mooney (1940) expression
for higher order elasticity for the incompressibility component and a generalization of the Simo and Pister
(1984) proposal for the compressibility component. The purpose of this paper is to extend the original
derivation by detailing the general constitutive relationships for the second Piola Kirchhoff and Eulerian
stress tensors in terms of the metric tensor, and to verify the formulation by applying it to a wide variety of
materials including rubbers and foams under several loading states.

2. Continuum kinematics

The difference between the square of the length of the differential line element vector in the deformed
state d§ = g,ds’ and the square of the length of the differential line element vector in the undeformed state
ds = g,ds’ is used in as a measure of the state of deformation (Ogden, 1997). That is

d8° — |ds|” = ds - (C — 1) - ds = (gxg" — o/)ds'ds; (1)

where g¥ are contravaraiant components of the metric tensor in the undeformed state, g;, are covariant
components of the metric tensor in the deformed state, ¢, is the Kronecker delta, I = g, ® g’ is the identity
tensor and C is the right Cauchy—Green deformation tensor defined by

C=FF=ggog (2)

The right Cauchy-Green deformation tensor is symmetric and positive definite. In the above equation,
F = g, ® g’ is the deformation gradient tensor. Note i, j are indices which take on the values 1, 2 and 3. The
convention is adopted where a repeated index is used to imply summation. A bracketed index indicates that
the summation convention is suppressed. Using the spectral representation (see Ogden, 1997) of right
Cauchy-Green deformation tensor we can write

3
C= Z(ii)zu(i) ou’ I=dveu (3)

=1
where u) is the ith normalized eigenvector of C and /; is the ith real positive eigenvalue which also rep-
resents the principal relative stretch. There are many tensor invariants which can be written in terms of the
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metric tensor in the undeformed and deformed state, as well as the relative stretches. The most common
quoted triad of invariants are the principal invariants of the right Cauchy—Green deformation tensor
([1,[2,13) giVen by

L= t(C) = g7 = ()2 + () + (a)? (4)

L=12{(trC) —trC} = gyl = 1/2(1F — g"g"@u&n) = (h/a)’ + (i)’ + (lals)’ (5)

L=J= g =1 /6{(tr C)® — 3tr Ctr C? + 2tr C3} =1/6(I; —31,8"g" 81,81 + 288" ¢ &/n&in&io)

= (hhads)? (6)

where /;, 4, and 45 are the principal stretches, g = det(g;;) and g = det(g;;). The invariant /; represents the
sum of the squares of relative ratios of the three distinct sides of the deformed parallelepiped, I, the sum of
the relative ratios of the squares of the three distinct surface areas of the deformed parallelepiped and /5 the
relative ratio of the square of the volume of the deformed parallelepiped. Associated with this set of in-
variants are the inverse principal invariants given by
_ I I 1
Li=t(CY=" [,=— [;=— 7
1 =1tr(C7) L e e (7)
Another set of invariants which are characterized by having no coupling terms in the principal stretches
and only involving the principal stretches to even powers are defined by

Ly =tr(C) = g7g; = (1) + (l2) + (%)’
Ly = tr(C?) = ggYg0 = ()" + (la)* + (4a)’ (8)
L3 - tr(C3) = gMign'ngkgjmgkngia = (21)6 + (/12)6 + ()“3)6

1 1 1
Lyi=tu(C) =g =—5+—5+
1 T () ()
o 1 1 1
Lo=t(C7) = gugig"g" = —+—+— 9
EE Gy ) ®)
) ) 1 1 1
L3 =tr(C) = g,ug, g™ 8" 8" = - -
’ (1) () (4s)°

General invariants L, and L_, of this form with principal stretches to any even power 2n are denoted here
by

Ly =tr(C") = (i) + (A2)" + (33)" Loy =tr(C™) = () "+ () "+ (43) " (10)

with the understanding that » is used as an index in L, and L_,,.

3. Isotropic hyperelastic strain energy density

The variation of the strain energy density dU with respect to the initial volume is related to the variation
in work 3/ by the equation (Renton, 2002):

S(UdV) = d(W) (11)
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This equation can be used to establish the constitutive relationship for a hyperelastic material, between a
stress tensor and measures of deformation not necessarily the conjugate strain (see Attard, 2003). For the
second Piola Kirchhoff stress tensor 7 = ng; ® g; and the Eulerian stress tensor 7 = 1/g; ® g; we have
ou oU
=2— 1J=2F__~F'
TT%%C ¢ aC
ou oU ou
—+ =2

08, 0g; 08ij

(12)

n/ =1"J =

while for the principal physical Lagrangian s{ (engineering stresses) and Eulerian stresses ¢l (true
stresses)

Sl — ou (i) _ ) ou (13)

p oA P J 04

Note the Cauchy stress tensor is equivalent to the Eulerian stress tensor but is commonly written with basis
{g} such that 7 = 1/g; ® g; = ¢'g; ® g; where ¢” are the contravariant Cauchy stress components with
respect to undeformed tangent base vectors. Attard (2003) discusses several postulates that the strain energy
density must satisfy and these are summarized here. The strain energy density must be non-negative for all
deformations and invariant. The strain energy density can be written as a function of either the stretch or
strain invariants and because of isotropy be symmetrical in form with respect to the principal stretches ,,
J, and 7;. The strain energy density must have a zero minimum value at the undeformed state (4, = 1,
/o =1 and A; = 1). The minimum condition guarantees that the material is stress-free in the undeformed
state. Hence

<6U> B <62U> ~o

. - i 2

ai’ undeformed state a/h" undeformed state ( 14)
*U )

<a/“iaj‘f undeformed state

At a singularity (4, = 0) or (4; — 00), the strain energy density must approach positive infinity. Stresses, on
the other hand, should approach negative infinity at singularity (4; = 0) and positive infinity for very large
deformations (4, — 00).

The strain energy density is assumed to be decomposed into two components, one Uincomp associated with
incompressibility while the other Ueomp is associated with the compressibility or specific volume change. The
compressibility component is associated with the application of a hydrostatic pressure. It is assumed that
the incompressibility component should involve no coupling of the principal stretches. This assumption will
be discussed further when we look at the constitutive relationship of the principal physical stresses.

It was proposed in Attard (2003) that the incompressibility component could be represented as a linear
function of the general invariants L, and L" which contain even powers of the principal stretches and the
reciprocal of the principal stretches, hence:

A4 B (A4 B
Uincomp = ;jtr(C” -1) +2thr(C*" 1) = Z{ 2—;(L,, -3) +2—;(L_,1 - 3)}

- 2_;{21;1 [0 4+ ()™ + ()" = 3] +% ()" 4+ ()" + () = 3] } (15)

where 4, and B, are material constants, and r is the termination point of the summation. Eq. (15) is the
same as Mooney’s (1940) general expression for high order elasticity. The simple (two term) Mooney
expression for Ujpcomp results if one considers only 4, and B, hence
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ljincomp = 1/2{A1tr(C — I) +Bltr(C71 — I)} = 1/2{A1(L1 — 3) + B](L_l — 3)} (16)

This expression is often rewritten in the literature and referred to as the Mooney—Rivlin expression, by
substituting I; = L; I, = L_, for an incompressible material, hence Eq. (16) is rewritten as

Uincomp = 1/2{141(11 - 3) +Bl(12 - 3)} (17)

The expression for Ujncomp given in Eq. (15) satisfies the Valanis—Landel hypothesis that the strain energy
density for incompressible isotropic materials should be capable of representation as the sum of three
separate but identical functions of each of the individual principal stretches (see Ogden, 1997; Treloar,
1975). Because of isotropy the compressibility component Ugomp, must be a function of the volumetric
dilation through the invariant J. The compressibility component is split into two terms of the form
Ucomp(J) = U(J) — (32,_ {4, — B,}) InJ. The logarithmic term is needed (provided (3=, {4, — B,}) # 0)
so that, the material is stress free at the undeformed state. Simo and Pister (1984) remarked that the
compressibility component of the strain energy density should approach infinity at both a singularity J — 0
and infinite volume change J — oo and proposed Ucomp(J) = 1/24(InJ )> — GInJ for neo-Hookean iso-
tropic elasticity where G is the shear modulus and A the Lamé constant. The Simo and Pister (1984)
proposal is generalized here. The proposed strain energy density in Attard (2003) for an isotropic hyper-
elastic material is

U= l]incomp + Ucomp

2 n Bn —n > An 2n Er :
lncomp C — l %tr(c — l) Ucomp = { nil Z (an) — ( 2 An — Bn) an}
(18)

where A, are material constants; » and s are termination points of the summation. Another way of splitting
the strain energy density would be into non-coupled terms Uponcouplea and an interaction or coupling
component Ugyped With regard to the principal stretches. The strain energy would then be written as

U= Unoncoupled + Ucoupled

noncoupled Z f C_n <ZA - B > InJ (19)

A,
Ucoupled - Z 2_ (ll’l J)

Considering material stability, the material constants must satisfy

o*U r
(7) =D {2n(4, +B)} + Ay = E >0
0/; undeformed state n=1 (20)

2
<6U> = 4,20
a}“ia/“j undeformed state

st
where E; = (ﬁ)
! undeformed state
Further, the specified material constants should satisfy the following for physically acceptable stable results:

is the tangent modulus for an isotropic material at the undeformed state.
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/i—0 U-—oo.. B, >0 provided tr(C""—1)#0 V4 else B,_; > 0 etc.

If VB, =0 then » 4,>0 and 4, >0

n=1

Ji—oo U—oo.. A >0 provided tr(C"—1)#0 V4 else 4, > 0 etc.

r 22
If V4, =0 then ZBn>O and A, >0 (22)

n=1

It must be emphasized here, that the stability conditions Egs. (20)—(22), to be satisfied by the material
constants do not guarantee the positive definiteness of the strain energy and this requirement must be
checked for each particular set of material parameters chosen.

When a material is Hookean at infinitesimal strain, the material constants are related to the shear
modulus G, bulk modulus K and the Lamé constant A by

_E ) _ Eu B B 2¢ ;
G_72(1+u)_;{ (An+Bn)}7 =00 =~M K—A1+3; (4,+B,)  (23)

with E being the elastic modulus and p the Poisson’s ratio. Combining Egs. (20) and (23) we find that for a
Hookean material the following must be satisfied:

26+A=E>0 and A4>0 (24)

implying the well-known condition that the Poisson’s ratio must be less than 0.5 and greater than —1.

4. Constitutive relationships—principal physical stresses

First, the general expressions for the principal physical Lagrangian and Eulerian stresses are derived.
Combining Egs. (13) and (18) we have

ii ii Ai RN 22n 9 —2n N n o
W =T =T {0 =1 =B, =)} +po =2 {ai =82 4+ pr (25)

n=1

where pr is a hydrostatic pressure component of the principal stresses defined by

S An n— . An - Bn
m=27(an)2 I—Z{ 7 }=pv+Po (26)
n=1 n=1
where p, = =Y {#5} and p, = >, 2 (InJ )*"~"is the hydrostatic pressure associated with volumetric
dilation. Looking at Eqgs. (18) and (25), the principal physical Lagrangian stresses have the form
i aljnonc:ou led al]cou led Jpv (Anv'])
s = 5 pled a; = f(Ay, By, 1) +T (27)

It follows that any interaction between the principal physical stresses will therefore only come as a result of
a hydrostatic pressure associated with volumetric dilation.

The constitutive law for the principal physical Lagrangian and Eulerian stresses for a Hookean material
based on Eq. (25) is therefore

ii ii h_ G
%(s)zsfn>j:j(t'2_1)+pvl (28)

with p,; being equal to 422/ (note 4, = G and A4, = A).
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When dealing with an exactly incompressible material (J = 1), stresses in general can not be determined
from the strain energy as one can have a hydrostatic pressure which does not contribute to the strain
energy. Vulcanized rubbers for example can be considered as almost incompressible for various loading
states. The Poisson’s ratio measured by Kawabata et al. (1981) on an isoprene rubber vulcanizate was
0.499914 demonstrating the almost incompressible nature of rubber (excluding loadings involving very
large hydrostatic pressures). Stresses can be determined, however, for some simple stress states where it is
known that one or more of the principal stresses are zero, say as in the case of uniaxial tension. Let us
consider the mean normal principal physical Eulerian stresses derived from Eq. (25) that is

=130 + 2+ =1/3- Z{A tr(C" — 1) = B,tr(C™" =)} +p, (29)
Now let us rewrite the equation for the principal physical stresses using Eq. (29) in the form
ii ii ;Ll' 1 - 22n n 1 —2n
o) =sg) =D {du(4" = 1/3tr(C) = B,(2," = 1/3tr(C™") } + p (30)
n=1

We can eliminate the mean normal stress by writing

1 n n —2n ) —<n
Clljl — Qf)z = J (31131/11 22/12 § {A /12 /12 n(/“l ? /“22 )}
l " " _n 1 —2n
- = J( 5720 — 53 ) = E {4,(3" = 73") = B,(A, " — 4™} (31)

1
33 1 _ 3(35,313 Hil Z{A i2n lZn _ ( 72:1 _ /1172n)}

>p "~ *p

For the special case of bi-axial loading of an incompressible material producing gsf =0and 4; = ﬁ we can
further simplify Eq. (31) to

L,.rl,l 5?,2 — Sll;tl —S /Lz Z{A )Zn ( 1—2n _ )vz—Zn)} (32)

gl =My = Z{An(zf" — ()™ = By (O — (/1122)2")} (33)
n=1

&2 =520 = Z{Anug” — Uada) ™) = Bu(05™ — (Al;bz)z")} (34)

n=1

5. Constitutive relationships—stress tensors

The Eulerian and the second Piola Kirchhoff stress tensor can be determined from Eqgs. (12) and (18). To
derive the partial derivatives of the invariants with respect to the right Cauchy—Green deformation tensor
we note the following:

otr(C")
oC

= nC"! (35)
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To prove this formula, we invoke the spectral representation of C" = Z?:I (lf)"u(i) ® u') and hence we can
write

3
0% (2
otr(C") N 23 =t (i) i\ _ -l

i=1

Substituting Eq. (18) into Eq. (12), using Eq. (35) and noting that aal—gj =1/2C"", we can write

n= Z (4,]C" —1) = B,[C" —1))C" + Jp,C!
T :} Z (4,[B" =1 — B,[B™" —1]) + p,I

n=1

(37)

where B = FF" is the Finger or left Cauchy—Green deformation tensor. The volumetric part of the Eulerian
stress tensor is then given by

(1" = 1/3tr() = } { 1 /3”zr;Antr(B” —1)~ B,ur(B™" — ) }I +pl (38)

being invariant of the coordinate configuration. The deviatoric part of the Eulerian stress tensor is therefore

r

n=1

One can see that the deviatoric part of the Eulerian stress tensor is not a function of the compressibility
material parameters A, or the hydrostatic pressure. The physical Lagrangian s” (the physical counterpart to
n/g; ® g;) and the physical Eulerian ¢” stresses (the physical counterpart to /g; ® &) can now be derived
using Eq. (37) from (see Attard, 2003)

s =Jcv 7 (40)

o3

g(ii
For a neo-Hookean material Eq. (37) reduces to

n=GI-C'|+4InJC" 7/ =GB -1+ AlnJI
1/ =1J = Glg" — g"] + AlnJg"’

6. Comparison with experiments

The experimental results presented in the following figures have generally been obtained by digitizing
from scanned graphs taken from the literature unless tabulated results were available. The number of
material parameters needed to describe the test results depends on the level of non-linearity of the load
versus stretch relationships and whether one wants to just model one loading regime say uniaxial tension or
if one wants to be able to model several stress states. The material parameters were in general determined by
using a least squares regression analysis of the experimental data. This was easily implemented using the
commercial package MATLAB. If the shear modulus and/or the bulk modulus are known then Eq. (23)
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was also incorporated into the least squares analysis. The constraints defined by Eqgs. (20)—(22) are also
checked.

7. Incompressible rubber-like materials

Experimental verification of many of the proposed strain energy density expressions for incompressible
materials is usually based on experiments involving a state of pure homogeneous strain. The experiments
usually include uniaxial tension, uniaxial compression, equi-biaxial tension and pure shear. Appendix A
details the expressions for the physical principal stresses calculated for these various loading states. The
datum set of experiments consisting of uniaxial tension, pure shear and equi-biaxial tension are those of
Treloar (1944). In Attard (2003) it was shown that a four parameter (4,, A,, 43, B;) strain energy density
based on Eq. (18) gave a good comparison with the experimental results of Treloar (1944). However, if one
examines Eq. (A.4) for gff under pure shear, it is evident that more terms are required if one wants to
describe any stress state. Ogden (1997) obtained an excellent fit with a six parameter model. A six parameter
model will generally be used here for modeling rubber or rubber-like materials unless otherwise stated.

Figs. 1-3 show a comparison with the experimental results on rubber of Treloar (1944), Heuillet and
Dugautier (1997) and Kawabata et al. (1981), respectively. All comparisons give a reasonable fit to the
experimental results. The material parameters used in the proposed model are given in each of the figures.
Fig. 4 shows a further comparison for a silicon rubber under uniaxial compression and biaxial compression
taken from Arruda and Boyce (1993). The example of a neoprene film under equi-biaxial tension and
uniaxial tension tested by Alexander (1968) is shown in Fig. 5. The neoprene film displays a high level of
stiffening with increasing deformation.

Kawabata et al. (1981) also tested their isoprene rubber vulcanizate under biaxial tension for various
fixed values of 1; while varying 4,. The material parameters quoted in Fig. 3 were substituted into Egs. (33)
and (34) to estimate the biaxial stress state. Fig. 6 shows a comparison of the predictions for the stress state
and those obtained from experiments. Generally the results match very well. The only discrepancy is for the

5
o
¢ Unaxial Tension

4 4 A Pure Shear
<
< o Equi-Biaxial ©
\é — Proposed Model
£ 3
%)
<
Q
4
>
<
oo
C
8
S Rubber
= A,=0.3473 A,=-0.006043
-1 A;=2.167E-04 B;,=0.01279

B,=-2.354E-05 B;=4.737E-08
G=0.35
O T T T T T T
1 2 3 4 5 6 7 8

A

Fig. 1. Comparison with the experimental results of Treloar (1944).
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4

¢ Uniaxial Tension & Compression
A Pure Shear

34 O Equi-Biaxial Tension
— Proposed Model

Natural Rubber
A,=0.4784 A,=-0.009186
A;=0.0001940 B,=0.02935
G=0.49

Lagranian Physical Stress (MPa)
-

Fig. 2. Comparison with the experimental results of Heuillet and Dugautier (1997).

1.6
O Equi-Biaxial

141 A Pure Shear - Stress 11
= O Pure Shear - Stress 22
g 12 < Uniaxial Tension
s — Proposed Model
£ 1
%}
g
2 0.8
>
<
o
c 0.6 1
©
c
o
o 0.4 .
« Isoprene Rubber Vulcanizate

A,;=0.39 A,=-0.01817 A,=0.0008588

0.2 B,=0.02949 B,=-0.0005324 B,=0.3404E-05
G=0.39
0d . - - T
1 1.5 2 2.5 3 35 4
A

Fig. 3. Comparison with the experimental results of Kawabata et al. (1981).

largest held stretches 4; = 3.4 and 3.7. As will be discussed later this could indicate that the proposed strain
energy density does not hold for biaxial loading with large constrained stretch or another explanation could
be that the test results could be affected by relaxation in the rubber when held at very large stretch. We will
come back to this explanation later.

The Valanis—Landel hypothesis mentioned earlier, states that the strain energy density could be written
as three separate independent functions of the principal stretches. Ogden (1979) refers to this as the
“separability” of the strain energy density. One of the conclusions that can be surmised from the Valanis—

Landel hypothesis is that given a biaxial loading producing stresses say ¢;' and ¢’, at constant /,, the
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A
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0 T T T T S 3
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o
=3
w104 A Uniaxial
g Compression
I} ¢ Biaxial Compression
.8 — Proposed Model
2
T
= -20-
<
= Silicon Rubber
5 A,=0.1162 A,=-0.001374
3 A;=0.7251E-05 B,=0.1065

A G=0.22
-30

Fig. 4. Comparison with the experimental results of Arruda and Boyce (1993).
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O Equi-Biaxial
¢ Uniaxial Tension
g — Proposed Model
% 20 A
%]
g
n
<
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[
>
<
o 10 4
c
g Neoprene Film
I A,=0.7498 A,=-0.005971
g A;=0.0006056 B,=0.04605
- B,=0.00007652 G=0.79
0 - T T T T T T T T
1 2 3 4 5 6 7 8 9 10

Fig. 5. Comparison with the experimental results of Alexander (1968).

curves as a function of /, representing the difference ¢}' — ¢2*, should all have the same shape. All the curves
should be able to be superimposed on the curve for pure shear (4, = 1). To see this consider Eq. (32)
rewritten here:
ol — =i =i = Al = A" = B4 = 05 (42)
n=1
It is easy to see that the family of curves for ¢}' — ¢ should all have the same shape but are shifted
vertically for different constant 4,. Vangerko and Treloar (1978) were able to test this hypothesis experi-

mentally by applying large biaxial stretches up to the order of 5 on two batches of rubber, one containing
3% Sulphur and the other 5%. Comparisons of the measured true stresses versus stretch with the results of
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14
1.2 A ¢ Kawabata et al. 1981
— Proposed Model
14
A=1.04
& 081 ,1.08
=3
8, 06
0.4 4
0.2 4
0 +%

s (MPa)

Fig. 6. Comparison with the experimental results of Kawabata et al. (1981). The broken line represents equi-biaxial loading while the
horizontal axis represents uniaxial tension.

the proposed model are shown in Figs. 7 and 8. Fig. 9 shows plots of the true stress difference versus stretch
/1. The prediction of the stress ¢)' = s}'4; in the direction of the varying stretch ;, compares very well with
the test results as shown in Fig. 7. The prediction of the stress ¢;* = 57°/, in the direction of the constrained
stretch /,, generally compares well with the test results, except for the largest constrained stretch 7, = 3.36
for the 3% sulphur rubber and 4, = 3.38 for the 5% sulphur rubber. For these two cases the test results are
lower than the predicted values (Fig. 8). Vangerko and Treloar (1978) compared their test results to the
prediction of Ogden’s (1972) model which also satisfies the Valanis—Landel hypothesis. The predictions of
gf,z = sf,z/lz by the Ogden model were also larger than the test results for these two cases. Vangerko and
Treloar (1978) remarked that it is natural to attribute the lower values of ¢’ = 537/, to a “stress-relaxation
effect, associated with the fact that the circumferential strain 7, in the specimen is maintained during the
whole course of an experiment, whereas the axial strain A, attains its maximum value only for a com-
paratively small fraction of the total time”. Fig. 9 shows a comparison of the ¢' — ¢ =s,'41 — 577/
curves. If the Valanis—Landel hypothesis holds then the curves should all be parallel. The test results
compare well with the predicted except for the two cases of the largest constrained stretch 1, = 3.36 for the
3% sulphur rubber and 4, = 3.38 for the 5% sulphur rubber. Vangerko and Treloar (1978) observed that
the value of 4, for the equi-biaxial stress state ¢! — ¢* = 0, should be equal to the maintained stretch 7,.
For the cases 4, = 3.36 for the 3% sulphur rubber and 4, = 3.38 for the 5% sulphur rubber, the test results
for 4, for which ¢}' — ¢2* = 0, were not identical to the maintained stretch. This supports the contention
that stress-relaxation has effected the results for the largest maintained stretches and that the Valanis—
Landel hypothesis is supported by the experimental results.

8. Compressible materials
8.1. High hydrostatic pressure
The strain energy density model presented in Eq. (18) has been compared to experiments carried out at

very high hydrostatic pressures in Attard (2003) to investigate the appropriateness of the compressibility
component of the proposed strain energy density. The results presented in Attard (2003) will be summa-
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Fig. 7. Comparison with the experimental results of Vangerko and Treloar (1978): (a) 3% sulphur rubber and (b) 5% sulphur rubber.

rized here. In hydrostatic compression tests performed by Adams and Gibson (1930) and Bridgman (1933,
1935, 1945) results were achieved down to values of J of the order of 0.8 (see Ogden, 1997). A three
parameter (4; = G, A; = A, A,) strain energy density expression for compressible materials was considered
in Attard (2003) and detailed in the following equation:

U=1/2G(I; — 3) + 1/24(InJ)* + 1/44,(InJ)* — GInJ (43)

Assuming that under a hydrostatic pressure we make take A; = A, = 43 = J'/3, the general form of the
hydrostatic pressure p, can then be derived from Eq. (29) as:

Jpn =3 (4P = B £ 3,0y (44)
n=1

n=1
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Fig. 8. Comparison with the experimental results of Vangerko and Treloar (1978): (a) 3% sulphur rubber and (b) 5% sulphur rubber.

For the three parameter model considered here we have
Jpn = G = 1) + A(InJ) + Ay(InJ)’ (45)

Based on the experimental results for the compressibility of sodium and N-amyl iodide of Bridgman (1935,
1933), Rubber “A” of Adams and Gibson (1930) and Goodrich D-402 and Koroseal of Bridgman (1945),
material parameters were determined and are listed in Table 1. Fig. 10 shows a good comparison between
the model predictions with the experimental results.

8.2. Uniaxial tension—volume change in rubber

Attard (2003) investigated the use of the proposed strain energy density to predict volume change under
uniaxial tension. The experimental work of Penn (1970) was studied. This example will be reexamined here.
Penn (1970) measured the volume change of vulcanized natural gum rubber under uniaxial tension. The
stress versus stretch data showed the opposite curvature to that demonstrated by the volume change versus
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Fig. 9. Comparison with the experimental results of Vangerko and Treloar (1978): (a) 3% sulphur rubber and (b) 5% sulphur rubber.

Table 1

Material parameters
Material parameter A =G K (GPa) A = A (GPa) Ay /Ay
Sodium 3.333 GPa 6.3 4.078 11.12
N-amyl iodide 0 1.73 1.73 15.87
Rubber “A” 0 5.2 52 4443
Goodrich D-402 0 3.55 3.55 48.02
Koroseal 0 2.63 2.63 48.02

stretch data (refer to Figs. 11 and 12). At stretches above 1.5 the “two curves deviate significantly when the
volume change becomes concave downward while the stress curves upward”. Penn (1970) argued that
because of this deviation the strain energy density could not be decomposed into the sum of an incom-
pressible and compressible component.
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Fig. 10. Comparison with the experimental results of Bridgman (1933, 1935, 1945) and Adams and Gibson (1930).

Attard (2003) used a four parameter strain energy density for this example given by
U = 1/24,tr(C — 1) + 1/2B,tr(C™" — 1) + 1/44str(C* — 1) + 1/24,(InJ)* — (4, + 4, — B;) InJ  (46)

The Lagrangian physical principal normal and lateral stresses (sf)2 = sif = 0) based on the four parameter
model are therefore

st =4\ = 1)+ A4 = 1) = Bi(47 = 1)+ 41 InJ (47)

0=s2l=A1(75— 1)+ A(J5— 1) = Bi(J;> = 1) + Ay InJ (48)

Ehlers and Eipper (1998) who examined numerically the lateral strain under uniaxial loading for rubber and
rubber-like materials, they observed that certain formulations gave unphysical results. Plots of numerically
obtained longitudinal strain versus lateral strain showed unrealistic results as J — 0. The lateral strain first
increased as the section was compressed but as the longitudinal strain approached —1 (J — 0), some
formulations predicted that the lateral strain would then contract and approach negative infinity. It can be
seen from Eq. (48) that as J — 0, the lateral stretch behaviour predicted by the proposed formulation
behaves as one would expect with 1, — +oo (note A;, B; and 4, are assumed to be positive). Eq. (48) also
reveals that as 4; — +oo the lateral stretch asymptotes towards zero 4, — +0 and the volume ratio ap-
proaches positive infinity J — +oo.

The material parameter A; was set to the bulk modulus estimated from Penn (1970) at 2000 MPa. Penn
(1970) quoted the Mooney constants as approximately 0.361 and 0.165. These correspond to parameters 4,
and By, respectively. The 4; parameter was set at 0.361 and the remaining two parameters (4, and B;) were
estimated using the experimental data. Once the parameters were set, Eq. (48) was numerically solved for
the lateral stretch 4, for a given value of the longitudinal stretch A;. The longitudinal stress defined in Eq.
(47) was then calculated for the given longitudinal stretch 4, and estimated lateral stretch A,. The pre-
dictions of the model are compared to the experimental data of Penn (1970) in Figs. 11-13 and show
excellent agreement. Fig. 13 demonstrates no unrealistic results are obtained as 4; — co.
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8.3. Uniaxial tension—volume change in polyurethane foam

In the previous example dealing with a natural gum rubber, there was a continuous volume increase with
increasing tension. This is generally the case for most compressible materials and the proposed hyperelastic
model is based on this premise. The exception seems to be for cellular solids such as polyurethane or open-
cell elastomeric foams. Such foams have wide practical applications including cushioning, energy
absorption and as noise barriers. Continuing volume dilation has been observed for some polyurethane
foams under tension (see Blatz and Ko, 1962). However, uniaxial tension tests carried out by El-Ratal and
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Mallick (1996) on a commercial and seat type foam showed an initial increase in volume under tension, but
once a maximum was obtained there was volume decrease. The loading during the tests was discontinued
when signs appeared of possible tearing. The longitudinal stress versus stretch relationship was highly
nonlinear as can be seen in Fig. 14 and has a very different behaviour to that of the natural gum rubber
studied by Penn (1970). The proposed hyperelastic model was applied to the uniaxial tension test results of
El-Ratal and Mallick (1996). Others to model the test results of El-Ratal and Mallick (1996) have been
Jemiolo and Turteltaub (2000) and Murphy and Rogerson (2002). Jemiolo and Turteltaub (2000) presented
a parametric study based on a modified elastic strain energy density derived from Ogden’s (1997) model.

40
O El-Ratal & Mallick 1996 Seat
Foam
¢ El-Ratal & Mallick 1996
Commercial Foam
— — Proposed Model
20 +

—— Proposed Model

Stress (kPa)

0.9

-20

M

Fig. 14. Comparison of uniaxial tension stress versus longitudinal stretch.
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Murphy and Rogerson (2002) extended Blatz and Ko (1962) hypothesis of a power law relationship be-
tween the longitudinal stretch and the lateral stretch for the case of uniaxial tension.

To model the two types of foam, a four parameter model (4, 4,, 45 and A;) was employed here. The
equations for the Lagrangian physical principal normal stresses are:

st = (2 = 1) + A (& = 1)+ 43(4 — 1) + A InJ (49)

0=s5l=A1(75— 1)+ A(J5 — 1) + 4345 — 1) + Ay InJ (50)

A least squares fit was used to select the material parameters which are given in Table 2. The same
numerical approach as in the previous example was employed to solve for the longitudinal stress, and the
longitudinal and lateral stretches. Fig. 14 shows a comparison of the experimental stress versus stretch
results with those predicted from the hyperelastic model. The comparison is reasonable. Fig. 15 compares
the lateral stretch versus longitudinal stretch results. Again one could ascertain that the comparison is
reasonable although one would need compression data to further verify the model.

The volume change predicted by the proposed hyperelastic model as shown in Fig. 16, shows a trend
which is not evident in the experimental results for stretches close to those beyond the maximum measured
in the experiments. In the test results, the volume change shows an increase and then a decrease from a
maximum. The proposed hyperelastic model also follows this trend but then shows a steady increase from a
minimum. The proposed hyperelastic model with the parameters chosen to model this experiment predicted

Table 2
Material parameters
Material parameter Seat foam (kPa) Commercial foam (kPa)
A, 26.26 25.03
A —44.97 —-39.24
As 22.72 18.77
Ay 3.504 2.268
11

0.9 1
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Fig. 15. Comparison of lateral stretch versus longitudinal stretch.
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that as 4; — +oo the lateral stretch asymptotes towards zero 4, — +0 and the volume ratio approaches
positive infinity J — +o0o0. An opposite trend is observed if one looks at the Poisson’s ratio defined by
u(h) = fZ:M. Fig. 17 shows a comparison of the Poisson’s ratio. The test results show an increasing Pois-
son’s ratio simulated correctly by the hyperelastic model. The proposed model, however, shows a maximum
Poisson’s ratio and then a continuing decrease. Blatz and Ko (1962) suggested that for a highly nonlinear

material it is more appropriate to define an apparent Poisson’s ratio given by

_ ln()vz) 51
p=—— (51)
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Fig. 17. Comparison of Poisson’s ratio versus longitudinal stretch.
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A logarithmic plot of the longitudinal and lateral stretches would then show a linear relationship with a
constant slope and pass through the origin. The results of Penn (1970) for the natural gum rubber show this
trend as can be seen in Fig. 18. The apparent Poisson’s ratio based on Eq. (51) for the two foams is also
plotted in Fig. 18. The apparent Poisson’s ratio for the two foams do not show a linear relationship but are
highly nonlinear. The comparison with the proposed model for the apparent Poisson’s ratio, however
shows good agreement. The proposed model does fit the experimental results well for the range of tensile
stretches tested but shows trends outside this range which can only be verified by further testing. Com-
pression tests coupled with uniaxial tension on the same foam materials would help verify the proposed
model and the material parameters chosen. Jemiolo and Turteltaub (2000) did provided extrapolated
compression results for the foams tested by El-Ratal and Mallick (1996) but these have not been used here
as they were not direct experimental results.

9. Conclusions

The strain energy density function for isotropic higher order elasticity developed in Attard (2003) has
been extended here by deriving the higher order constitutive relationships for the second Piola Kirchhoff
and Eulerian stress tensors as well as for their physical counterparts. General constitutive relationships have
also been derived for the principal Lagrangian and Eulerian stresses in terms of the principal stretches. The
strain energy density function is decomposed into a compressibility component being a generalization of the
Simo and Pister (1984) proposal for neo-Hookean elasticity, and an incompressibility component being the
generalized Mooney expression. Fundamental to the present proposal is the postulate that interaction or
coupling between principal stresses only comes about through the compressibility component of the strain
energy density function. In essence, the incompressibility component satisfies the Valanis—Landel
hypothesis that the strain energy density for incompressible materials should be capable of representation
as the sum of three separate but identical functions of each of the individual principal stretches. Vangerko
and Treloar (1978) were able to test this hypothesis experimentally by applying large biaxial stretches on
two batches of rubber. The predictions based on the proposed strain energy density compared very well
with Vangerko’s and Treloar’s test results. Discrepancies could be explained by noting that stress-relaxation
was present at the largest maintained stretches. Several experimental results for incompressible rubber-like
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materials under homogeneous strain were also compared to the predictions of the proposed model and
showed very good agreement.

Predictions for compressible materials under high hydrostatic compression were also good. The uniaxial
tension experimental results of Penn (1970) involved measurements of stress versus stretches and volume
changes in natural gum rubber. The proposed model compared well with the test results. The final com-
parison involved the tests conducted by El-Ratal and Mallick (1996) on two types of polyurethane foam
under large deformation uniaxial tension. The volume change in the foams initially increased under tension
and then showed a steady decrease with increasing tension. The proposed hyperelastic model could predict
this response, as well as matching the stress versus stretch relationships. The hyperelastic model however
predicted that eventually the volume change must increase with increasing tension so that as the longitu-
dinal stretch approaches infinity(4; — +00) the lateral stretch asymptotes towards zero (4, — +0) and the
volume ratio approaches positive infinity (/ — +00). Further verification of the compressibility component
of the proposed strain energy density function would be helped with the availability of compression and
tension tests on the same foam material with measurements of volume changes at large longitudinal stretch.

Appendix A

Here we derive the expressions for the stresses for the common types of experiments performed on

incompressible materials such as rubber under homogeneous strain with ¢>* = 0 and 4; = )11)2.

A.1. Uniaxial tension-compression

An incompressible material is stretched in the 1 direction with the lateral stresses gf)z and ¢® both zero.
From Eq. (34) we can conclude that 4, = 1/4/4; and therefore the longitudinal stress derived using Eq. (33)
is:

ol =syliy = ZA — ") = B, (37 " =0 (A1)

A.2. Equi-biaxial tension-compression

An incompressible material is stretched in two orthogonal directions 1 and 2. Hence 1, = 4, and

¢)' = ¢’ Substituting into Eqs. (33) and (34) gives

ol =8y = ZA M =B, = (A.2)

A.3. Pure shear

This stress state can be modeled by subjecting a material to biaxial tension but with one of the principal
stretches constrained to a fixed value of unity. Hence substituting /4, = 1 into Eqgs. (33) and (34) yields:

r

ol =i =) (A + B = ()7 (A.3)

n=1

=7 = Zi:An(l — () = B,(1 = ()™ (A4)
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