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Abstract

A strain energy density function for isotropic higher order elasticity is developed. The strain energy density is

decomposed into a compressibility component being a generalization of the Simo and Pister [Comput. Methods Appl.

Mech. Eng. 46, 201–215] proposal for neo-Hookean elasticity, and an incompressibility component being the gen-

eralized Mooney expression. A general constitutive relationship for the second Piola Kirchhoff and Eulerian stress

tensor for higher order elasticity is then derived from the proposed strain energy density. Constitutive relationships for

the principal Lagrangian and Eulerian physical stresses in terms of the principal stretches are also developed. Pre-

dictions based on the proposed strain energy density are compared with experimental results including incompressible

rubber-like materials under homogeneous strain, compressible materials under high hydrostatic compression, and

measured volume changes in rubber and foam under large deformation uniaxial tension.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

There are several material groups such as elastomers, polymers, foams and biological tissues which can

undergo large deformations without permanent set, and hence exhibit large nonlinear elastic behaviour.

The nonlinear elastic behaviour under load or prescribed displacement can be modelled using either a

physical description of the molecular interplay through theories such as the classical Gaussian theory, slip-

link or macromolecular network theories as discussed by Treloar (1975), Boyce and Arruda (2000), Bischoff

et al. (2000) and Meissner and Mat�ejka (2002), or by a phenomenological approach. The strain energy

expression formulated using a molecular approach is often complex and material specific. In the phe-
nomenological approach, material is treated as a continuum and a strain energy density is postulated,

usually in terms of the deformation invariants, generally strain or stretch invariants. Several material

parameters are usually needed to reflect the nonlinearity in the load stretch relationships. Typically for
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a rubber-like material under tension, the load stretch response will display an S-shaped behaviour with

stiffening at large stretches. The number of material parameters needed will be related to the level of

nonlinearity, and whether one loading regime (for example uniaxial tension) or a more general loading state

is being modelled.
There are many proposed strain energy density expressions in the literature. These can be grouped into

those dealing with incompressible materials and those extended to deal with compressibility. They can

further be split depending on the material group being modelled, whether for example the material under

consideration is a rubber, polymer, foam or biological tissue. They can also be grouped on whether or not

they satisfy the Valanis–Landel hypothesis (see Ogden, 1997; Treloar, 1975). The most widely cited strain

energy expressions are the Mooney–Rivlin, Ogden (1997) and Blatz and Ko (1962) models. Descriptions of

many of the proposed models can be founded in Treloar (1975), Beatty (1987), Ogden (1997), Lambert-

Diani and Rey (1999), El-Lawindy and El-Guiziri (2000), Boyce and Arruda (2000), Bischoff et al. (2000),
Bradley et al. (2001), and Meissner and �xpirkov�a (2002). A good phenomenological model is one that can

give good comparison with experimental results for any stress state with one set of material parameters,

gives stable results for all loadings, is applicable to a wide range of materials, and can be used to derive the

constitutive relationship for a chosen stress tensor in general coordinates. Attard (2003) proposed a strain

energy density for isotropic hyperelastic materials which consisted of the general Mooney (1940) expression

for higher order elasticity for the incompressibility component and a generalization of the Simo and Pister

(1984) proposal for the compressibility component. The purpose of this paper is to extend the original

derivation by detailing the general constitutive relationships for the second Piola Kirchhoff and Eulerian
stress tensors in terms of the metric tensor, and to verify the formulation by applying it to a wide variety of

materials including rubbers and foams under several loading states.
2. Continuum kinematics

The difference between the square of the length of the differential line element vector in the deformed

state dŝ ¼ ĝids
i and the square of the length of the differential line element vector in the undeformed state

ds ¼ gids
i is used in as a measure of the state of deformation (Ogden, 1997). That is
jdŝj2 � jdsj2 ¼ ds � ðC� IÞ � ds ¼ ðĝikgkj � djiÞdsidsj ð1Þ
where gkj are contravaraiant components of the metric tensor in the undeformed state, ĝik are covariant

components of the metric tensor in the deformed state, dij is the Kronecker delta, I ¼ gi � gi is the identity
tensor and C is the right Cauchy–Green deformation tensor defined by
C ¼ FTF ¼ ĝijgi � gj ð2Þ
The right Cauchy–Green deformation tensor is symmetric and positive definite. In the above equation,

F ¼ ĝi � gi is the deformation gradient tensor. Note i, j are indices which take on the values 1, 2 and 3. The
convention is adopted where a repeated index is used to imply summation. A bracketed index indicates that

the summation convention is suppressed. Using the spectral representation (see Ogden, 1997) of right

Cauchy–Green deformation tensor we can write
C ¼
X3
i¼1

ðkiÞ2uðiÞ � uðiÞ I ¼ ui � ui ð3Þ
where uðiÞ is the ith normalized eigenvector of C and ki is the ith real positive eigenvalue which also rep-
resents the principal relative stretch. There are many tensor invariants which can be written in terms of the
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metric tensor in the undeformed and deformed state, as well as the relative stretches. The most common

quoted triad of invariants are the principal invariants of the right Cauchy–Green deformation tensor

ðI1; I2; I3Þ given by
I1 ¼ trðCÞ ¼ gijĝij ¼ ðk1Þ2 þ ðk2Þ2 þ ðk3Þ2 ð4Þ

I2 ¼ 1=2 ðtrCÞ2
n

� trC2
o
¼ gijĝijI3 ¼ 1=2ðI21 � gkigljĝkjĝliÞ ¼ ðk1k2Þ2 þ ðk1k3Þ2 þ ðk2k3Þ2 ð5Þ

I3 ¼ J 2 ¼ ĝ
g
¼ 1=6 ðtrCÞ3

n
� 3trCtrC2 þ 2trC3

o
¼ 1=6ðI31 � 3I1gkigljĝkjĝli þ 2gmignjgokĝjmĝknĝioÞ

¼ ðk1k2k3Þ2 ð6Þ
where k1; k2 and k3 are the principal stretches, g ¼ detðgijÞ and ĝ ¼ detðĝijÞ. The invariant I1 represents the
sum of the squares of relative ratios of the three distinct sides of the deformed parallelepiped, I2 the sum of

the relative ratios of the squares of the three distinct surface areas of the deformed parallelepiped and I3 the
relative ratio of the square of the volume of the deformed parallelepiped. Associated with this set of in-
variants are the inverse principal invariants given by
I�1 ¼ trðC�1Þ ¼ I2
I3

I�2 ¼
I1
I3

I�3 ¼
1

I3
ð7Þ
Another set of invariants which are characterized by having no coupling terms in the principal stretches

and only involving the principal stretches to even powers are defined by
L1 ¼ trðCÞ ¼ gijĝji ¼ ðk1Þ2 þ ðk2Þ2 þ ðk3Þ2

L2 ¼ trðC2Þ ¼ gkigljĝjkĝil ¼ ðk1Þ4 þ ðk2Þ4 þ ðk3Þ4

L3 ¼ trðC3Þ ¼ gmignjgokĝjmĝknĝio ¼ ðk1Þ6 þ ðk2Þ6 þ ðk3Þ6
ð8Þ

L�1 ¼ trðC�1Þ ¼ gijĝji ¼
1

ðk1Þ2
þ 1

ðk2Þ2
þ 1

ðk3Þ2

L�2 ¼ trðC�2Þ ¼ gkigljĝjkĝil ¼
1

ðk1Þ4
þ 1

ðk2Þ4
þ 1

ðk3Þ4

L�3 ¼ trðC�3Þ ¼ gmignjgokĝjmĝknĝio ¼
1

ðk1Þ6
þ 1

ðk2Þ6
þ 1

ðk3Þ6

ð9Þ
General invariants Ln and L�n of this form with principal stretches to any even power 2n are denoted here

by
Ln ¼ trðCnÞ ¼ ðk1Þ2n þ ðk2Þ2n þ ðk3Þ2n L�n ¼ trðC�nÞ ¼ ðk1Þ�2n þ ðk2Þ�2n þ ðk3Þ�2n ð10Þ

with the understanding that n is used as an index in Ln and L�n.
3. Isotropic hyperelastic strain energy density

The variation of the strain energy density dU with respect to the initial volume is related to the variation

in work dW by the equation (Renton, 2002):
dðUdV Þ ¼ dðW Þ ð11Þ
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This equation can be used to establish the constitutive relationship for a hyperelastic material, between a

stress tensor and measures of deformation not necessarily the conjugate strain (see Attard, 2003). For the

second Piola Kirchhoff stress tensor p ¼ pijgi � gj and the Eulerian stress tensor s ¼ sijĝi � ĝj we have
p ¼ 2
oU
oC

sJ ¼ 2F
oU
oC

FT

pij ¼ sijJ ¼ oU
oĝij

þ oU
oĝji

¼ 2
oU
oĝij

ð12Þ
while for the principal physical Lagrangian sðiiÞp (engineering stresses) and Eulerian stresses 1ðiiÞp (true

stresses)
sðiiÞp ¼ oU
oki

1ðiiÞp ¼ kðiÞ
J

oU
oki

ð13Þ
Note the Cauchy stress tensor is equivalent to the Eulerian stress tensor but is commonly written with basis

fgig such that s ¼ sijĝi � ĝj ¼ rijgi � gj where rij are the contravariant Cauchy stress components with

respect to undeformed tangent base vectors. Attard (2003) discusses several postulates that the strain energy

density must satisfy and these are summarized here. The strain energy density must be non-negative for all

deformations and invariant. The strain energy density can be written as a function of either the stretch or

strain invariants and because of isotropy be symmetrical in form with respect to the principal stretches k1,
k2 and k3. The strain energy density must have a zero minimum value at the undeformed state ðk1 ¼ 1,

k2 ¼ 1 and k3 ¼ 1Þ. The minimum condition guarantees that the material is stress-free in the undeformed
state. Hence
oU
oki

� �
undeformed state

¼ 0
o2U

ok2i

 !
undeformed state

> 0

o2U
okiokj

� �
undeformed state

P 0 i 6¼ j i; j ¼ 1; 2; 3

ð14Þ
At a singularity ðki ¼ 0Þ or ðki ! 1Þ, the strain energy density must approach positive infinity. Stresses, on

the other hand, should approach negative infinity at singularity ðki ¼ 0Þ and positive infinity for very large

deformations ðki ! 1Þ.
The strain energy density is assumed to be decomposed into two components, one Uincomp associated with

incompressibility while the other Ucomp is associated with the compressibility or specific volume change. The

compressibility component is associated with the application of a hydrostatic pressure. It is assumed that

the incompressibility component should involve no coupling of the principal stretches. This assumption will

be discussed further when we look at the constitutive relationship of the principal physical stresses.

It was proposed in Attard (2003) that the incompressibility component could be represented as a linear

function of the general invariants Ln and Ln which contain even powers of the principal stretches and the

reciprocal of the principal stretches, hence:
Uincomp ¼
Xr
n¼1

An

2n
trðCn � IÞ þ Bn

2n
trðC�n � IÞ ¼

Xr
n¼1

An

2n
ðLn

�
� 3Þ þ Bn

2n
ðL�n � 3Þ

�

¼
Xr
n¼1

An

2n
ðk1Þ2n
h�

þ ðk2Þ2n þ ðk3Þ2n � 3
i
þ Bn

2n
ðk1Þ�2n
h

þ ðk2Þ�2n þ ðk3Þ�2n � 3
i�

ð15Þ
where An and Bn are material constants, and r is the termination point of the summation. Eq. (15) is the

same as Mooney’s (1940) general expression for high order elasticity. The simple (two term) Mooney
expression for Uincomp results if one considers only A1 and B1, hence
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Uincomp ¼ 1=2 A1trðC
�

� IÞ þ B1trðC�1 � IÞ
�
¼ 1=2 A1ðL1f � 3Þ þ B1ðL�1 � 3Þg ð16Þ
This expression is often rewritten in the literature and referred to as the Mooney–Rivlin expression, by

substituting I1 ¼ L1 I2 ¼ L�1 for an incompressible material, hence Eq. (16) is rewritten as
Uincomp ¼ 1=2 A1ðI1f � 3Þ þ B1ðI2 � 3Þg: ð17Þ
The expression for Uincomp given in Eq. (15) satisfies the Valanis–Landel hypothesis that the strain energy

density for incompressible isotropic materials should be capable of representation as the sum of three

separate but identical functions of each of the individual principal stretches (see Ogden, 1997; Treloar,

1975). Because of isotropy the compressibility component Ucomp must be a function of the volumetric

dilation through the invariant J . The compressibility component is split into two terms of the form
UcompðJÞ ¼ UðJÞ �

Pr
n¼1fAn � Bng

� �
ln J . The logarithmic term is needed (provided

Pr
n¼1fAn � Bng

� �
6¼ 0)

so that, the material is stress free at the undeformed state. Simo and Pister (1984) remarked that the

compressibility component of the strain energy density should approach infinity at both a singularity J ! 0

and infinite volume change J ! 1 and proposed UcompðJÞ ¼ 1=2Kðln JÞ2 � G ln J for neo-Hookean iso-

tropic elasticity where G is the shear modulus and K the Lam�e constant. The Simo and Pister (1984)

proposal is generalized here. The proposed strain energy density in Attard (2003) for an isotropic hyper-

elastic material is
U ¼ Uincomp þ Ucomp

Uincomp ¼
Xr
n¼1

An

2n
trðCn � IÞ þ Bn

2n
trðC�n � IÞ Ucomp ¼

Xs
n¼1

Kn

2n
ðln JÞ2n

(
�

Xr
n¼1

An

 
� Bn

!
ln J

)

ð18Þ
where Kn are material constants; r and s are termination points of the summation. Another way of splitting

the strain energy density would be into non-coupled terms Unoncoupled and an interaction or coupling

component Ucoupled with regard to the principal stretches. The strain energy would then be written as
U ¼ Unoncoupled þ Ucoupled

Unoncoupled ¼
Xr
n¼1

An

2n
trðCn � IÞ þ Bn

2n
trðC�n � IÞ �

Xr
n¼1

An

 
� Bn

!
ln J

Ucoupled ¼
Xs
n¼1

Kn

2n
ðln JÞ2n

ð19Þ
Considering material stability, the material constants must satisfy
o2U

ok2i

 !
undeformed state

¼
Xr
n¼1

f2nðAn þ BnÞg þ K1 ¼ Et > 0

o2U
okiokj

� �
undeformed state

¼ K1 P 0

ð20Þ
where Et ¼
osðiiÞp

oki

� �
undeformed state

is the tangent modulus for an isotropic material at the undeformed state.

Further, the specified material constants should satisfy the following for physically acceptable stable results:
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ki ! 0 U ! 1 ) Br > 0 provided trðC�r � IÞ 6¼ 0 8ki else Br�1 > 0 etc:

If 8Bn ¼ 0 then
Xr
n¼1

An > 0 and Ks P 0
ð21Þ

ki ! 1 U ! 1 ) Ar > 0 provided trðCr � IÞ 6¼ 0 8ki else Ar�1 > 0 etc:

If 8An ¼ 0 then
Xr
n¼1

Bn > 0 and Ks P 0
ð22Þ
It must be emphasized here, that the stability conditions Eqs. (20)–(22), to be satisfied by the material

constants do not guarantee the positive definiteness of the strain energy and this requirement must be

checked for each particular set of material parameters chosen.

When a material is Hookean at infinitesimal strain, the material constants are related to the shear
modulus G, bulk modulus K and the Lam�e constant K by
G ¼ E
2ð1þ lÞ ¼

Xr
n¼1

n
nðAn þ BnÞ

o
; K ¼ El

ð1þ lÞð1� 2lÞ ¼ K1; K ¼ K1 þ
2

3

Xr
n¼1

nðAn þ BnÞ ð23Þ
with E being the elastic modulus and l the Poisson’s ratio. Combining Eqs. (20) and (23) we find that for a

Hookean material the following must be satisfied:
2Gþ K ¼ Et > 0 and KP 0 ð24Þ

implying the well-known condition that the Poisson’s ratio must be less than 0.5 and greater than )1.
4. Constitutive relationships––principal physical stresses

First, the general expressions for the principal physical Lagrangian and Eulerian stresses are derived.

Combining Eqs. (13) and (18) we have
1ðiiÞp ¼ sðiiÞp

ki
J
¼ 1

J

Xr
n¼1

n
Anðk2ni � 1Þ � Bnðk�2n

i � 1Þ
o
þ pv ¼

1

J

Xr
n¼1

n
Ank

2n
i � Bnk

�2n
i

o
þ pT ð25Þ
where pT is a hydrostatic pressure component of the principal stresses defined by
pT ¼
Xs
n¼1

Kn

J
ðln JÞ2n�1 �

Xr
n¼1

An � Bn

J

� �
¼ pv þ po ð26Þ
where po ¼ �
Pr

n¼1
An�Bn

J

� �
and pv ¼

Ps
n¼1

Kn
J ðln JÞ2n�1

is the hydrostatic pressure associated with volumetric

dilation. Looking at Eqs. (18) and (25), the principal physical Lagrangian stresses have the form
sðiiÞp ¼ oUnoncoupled

oki
þ oUcoupled

oki
¼ f ðAn;Bn; kiÞ þ

JpvðKn; JÞ
ki

ð27Þ
It follows that any interaction between the principal physical stresses will therefore only come as a result of

a hydrostatic pressure associated with volumetric dilation.

The constitutive law for the principal physical Lagrangian and Eulerian stresses for a Hookean material

based on Eq. (25) is therefore
1ðiiÞp ¼ sðiiÞp

ki
J
¼ G

J
ðk2i � 1Þ þ pv1 ð28Þ
with pv1 being equal to K ln J
J (note A1 ¼ G and K1 ¼ K).



M.M. Attard, G.W. Hunt / International Journal of Solids and Structures 41 (2004) 5327–5350 5333
When dealing with an exactly incompressible material (J ¼ 1), stresses in general can not be determined

from the strain energy as one can have a hydrostatic pressure which does not contribute to the strain

energy. Vulcanized rubbers for example can be considered as almost incompressible for various loading

states. The Poisson’s ratio measured by Kawabata et al. (1981) on an isoprene rubber vulcanizate was
0.499914 demonstrating the almost incompressible nature of rubber (excluding loadings involving very

large hydrostatic pressures). Stresses can be determined, however, for some simple stress states where it is

known that one or more of the principal stresses are zero, say as in the case of uniaxial tension. Let us

consider the mean normal principal physical Eulerian stresses derived from Eq. (25) that is
p ¼ 1=3ð111p þ 122p þ 133p Þ ¼ 1=3
1

J

Xr
n¼1

�
AntrðCn � IÞ � BntrðC�n � IÞ

�
þ pv ð29Þ
Now let us rewrite the equation for the principal physical stresses using Eq. (29) in the form
1ðiiÞp ¼ sðiiÞp

ki
J
¼ 1

J

Xr
n¼1

Anðk2ni
�

� 1=3trðCnÞÞ � Bnðk�2n
i � 1=3trðC�nÞÞ

�
þ p ð30Þ
We can eliminate the mean normal stress by writing
111p � 122p ¼ 1

J
ðs11p k1 � s22p k2Þ ¼

1

J

Xr
n¼1

Anðk2n1
�

� k2n2 Þ � Bnðk�2n
1 � k�2n

2 Þ
�

122p � 133p ¼ 1

J
ðs22p k2 � s33p k3Þ ¼

1

J

Xr
n¼1

Anðk2n2
�

� k2n3 Þ � Bnðk�2n
2 � k�2n

3 Þ
�

133p � 111p ¼ 1

J
ðs33p k3 � s11p k1Þ ¼

1

J

Xr
n¼1

Anðk2n3
�

� k2n1 Þ � Bnðk�2n
3 � k�2n

1 Þ
�

ð31Þ
For the special case of bi-axial loading of an incompressible material producing 133p ¼ 0 and k3 ¼ 1
k1k2

we can

further simplify Eq. (31) to
111p � 122p ¼ s11p k1 � s22p k2 ¼
Xr
n¼1

Anðk2n1
�

� k2n2 Þ � Bnðk�2n
1 � k�2n

2 Þ
�

ð32Þ

111p ¼ s11p k1 ¼
Xr
n¼1

Anðk2n1
n

� ðk1k2Þ�2nÞ � Bnðk�2n
1 � ðk1k2Þ2nÞ

o
ð33Þ

122p ¼ s22p k2 ¼
Xr
n¼1

Anðk2n2
n

� ðk1k2Þ�2nÞ � Bnðk�2n
2 � ðk1k2Þ2nÞ

o
ð34Þ
5. Constitutive relationships––stress tensors

The Eulerian and the second Piola Kirchhoff stress tensor can be determined from Eqs. (12) and (18). To
derive the partial derivatives of the invariants with respect to the right Cauchy–Green deformation tensor

we note the following:
otrðCnÞ
oC

¼ nCn�1 ð35Þ
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To prove this formula, we invoke the spectral representation of Cn ¼
P3

i¼1ðk
2
i Þ

n
uðiÞ � uðiÞ and hence we can

write
otrðCnÞ
oC

¼
X3
i¼1

o
P3
m¼1

ðk2mÞ
n

ok2i
uðiÞ

8>><
>>: � uðiÞ

9>>=
>>; ¼ nCn�1 ð36Þ
Substituting Eq. (18) into Eq. (12), using Eq. (35) and noting that o lnJ
oC

¼ 1=2C�1, we can write
p ¼
Xr
n¼1

An½Cnð � I� � Bn½C�n � I�ÞC�1 þ JpvC
�1

s ¼ 1

J

Xr
n¼1

An½Bnð � I� � Bn½B�n � I�Þ þ pvI

ð37Þ
where B ¼ FFT is the Finger or left Cauchy–Green deformation tensor. The volumetric part of the Eulerian

stress tensor is then given by
ðsÞvol ¼ 1=3trðsÞI ¼ 1

J
1=3
Xr
n¼1

AntrðBn

(
� IÞ � BntrðB�n � IÞ

)
Iþ pvI ð38Þ
being invariant of the coordinate configuration. The deviatoric part of the Eulerian stress tensor is therefore
ðsÞdev ¼
Xr
n¼1

ðAnB
n � BnB

�nÞ � 1=3
Xr
n¼1

AntrðBnÞ
(

� BntrðB�nÞ
)
I ð39Þ
One can see that the deviatoric part of the Eulerian stress tensor is not a function of the compressibility

material parameters Kn or the hydrostatic pressure. The physical Lagrangian sij (the physical counterpart to
pijĝj � gi) and the physical Eulerian 1ij stresses (the physical counterpart to sijĝj � ĝi) can now be derived

using Eq. (37) from (see Attard, 2003)
sij ¼ J1ij
ffiffiffiffiffiffiffi
ĝðiiÞ

p
ffiffiffiffiffiffiffi
gðiiÞ

p ¼ J

ffiffiffiffiffiffiffiffi
ĝðjjÞ

p
ffiffiffiffiffiffiffi
gðiiÞ

p sij ð40Þ
For a neo-Hookean material Eq. (37) reduces to
p ¼ G½I� C�1� þ K ln JC�1 sJ ¼ G½B� I� þ K ln JI

pij ¼ sijJ ¼ G½gij � ĝij� þ K ln J ĝij
ð41Þ
6. Comparison with experiments

The experimental results presented in the following figures have generally been obtained by digitizing

from scanned graphs taken from the literature unless tabulated results were available. The number of

material parameters needed to describe the test results depends on the level of non-linearity of the load

versus stretch relationships and whether one wants to just model one loading regime say uniaxial tension or

if one wants to be able to model several stress states. The material parameters were in general determined by
using a least squares regression analysis of the experimental data. This was easily implemented using the

commercial package MATLAB. If the shear modulus and/or the bulk modulus are known then Eq. (23)
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was also incorporated into the least squares analysis. The constraints defined by Eqs. (20)–(22) are also

checked.
7. Incompressible rubber-like materials

Experimental verification of many of the proposed strain energy density expressions for incompressible

materials is usually based on experiments involving a state of pure homogeneous strain. The experiments

usually include uniaxial tension, uniaxial compression, equi-biaxial tension and pure shear. Appendix A

details the expressions for the physical principal stresses calculated for these various loading states. The

datum set of experiments consisting of uniaxial tension, pure shear and equi-biaxial tension are those of

Treloar (1944). In Attard (2003) it was shown that a four parameter (A1, A2, A3, B1) strain energy density

based on Eq. (18) gave a good comparison with the experimental results of Treloar (1944). However, if one
examines Eq. (A.4) for 122p under pure shear, it is evident that more terms are required if one wants to

describe any stress state. Ogden (1997) obtained an excellent fit with a six parameter model. A six parameter

model will generally be used here for modeling rubber or rubber-like materials unless otherwise stated.

Figs. 1–3 show a comparison with the experimental results on rubber of Treloar (1944), Heuillet and

Dugautier (1997) and Kawabata et al. (1981), respectively. All comparisons give a reasonable fit to the

experimental results. The material parameters used in the proposed model are given in each of the figures.

Fig. 4 shows a further comparison for a silicon rubber under uniaxial compression and biaxial compression

taken from Arruda and Boyce (1993). The example of a neoprene film under equi-biaxial tension and
uniaxial tension tested by Alexander (1968) is shown in Fig. 5. The neoprene film displays a high level of

stiffening with increasing deformation.

Kawabata et al. (1981) also tested their isoprene rubber vulcanizate under biaxial tension for various

fixed values of k1 while varying k2. The material parameters quoted in Fig. 3 were substituted into Eqs. (33)

and (34) to estimate the biaxial stress state. Fig. 6 shows a comparison of the predictions for the stress state

and those obtained from experiments. Generally the results match very well. The only discrepancy is for the
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largest held stretches k1 ¼ 3:4 and 3.7. As will be discussed later this could indicate that the proposed strain
energy density does not hold for biaxial loading with large constrained stretch or another explanation could

be that the test results could be affected by relaxation in the rubber when held at very large stretch. We will

come back to this explanation later.

The Valanis–Landel hypothesis mentioned earlier, states that the strain energy density could be written

as three separate independent functions of the principal stretches. Ogden (1979) refers to this as the

‘‘separability’’ of the strain energy density. One of the conclusions that can be surmised from the Valanis–

Landel hypothesis is that given a biaxial loading producing stresses say 111p and 122p , at constant k2, the
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curves as a function of k1 representing the difference 111p � 122p , should all have the same shape. All the curves

should be able to be superimposed on the curve for pure shear (k2 ¼ 1). To see this consider Eq. (32)

rewritten here:
111p � 122p ¼ s11p k1 � s22p k2 ¼
Xr
n¼1

Anðk2n1 � k2n2 Þ � Bnðk�2n
1 � k�2n

2 Þ ð42Þ
It is easy to see that the family of curves for 111p � 122p should all have the same shape but are shifted

vertically for different constant k2. Vangerko and Treloar (1978) were able to test this hypothesis experi-

mentally by applying large biaxial stretches up to the order of 5 on two batches of rubber, one containing
3% Sulphur and the other 5%. Comparisons of the measured true stresses versus stretch with the results of
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the proposed model are shown in Figs. 7 and 8. Fig. 9 shows plots of the true stress difference versus stretch
k1. The prediction of the stress 111p ¼ s11p k1 in the direction of the varying stretch k1, compares very well with

the test results as shown in Fig. 7. The prediction of the stress 122p ¼ s22p k2 in the direction of the constrained

stretch k2, generally compares well with the test results, except for the largest constrained stretch k2 ¼ 3:36
for the 3% sulphur rubber and k2 ¼ 3:38 for the 5% sulphur rubber. For these two cases the test results are

lower than the predicted values (Fig. 8). Vangerko and Treloar (1978) compared their test results to the

prediction of Ogden’s (1972) model which also satisfies the Valanis–Landel hypothesis. The predictions of

122p ¼ s22p k2 by the Ogden model were also larger than the test results for these two cases. Vangerko and

Treloar (1978) remarked that it is natural to attribute the lower values of 122p ¼ s22p k2 to a ‘‘stress-relaxation
effect, associated with the fact that the circumferential strain k2 in the specimen is maintained during the

whole course of an experiment, whereas the axial strain k1 attains its maximum value only for a com-

paratively small fraction of the total time’’. Fig. 9 shows a comparison of the 111p � 122p ¼ s11p k1 � s22p k2
curves. If the Valanis–Landel hypothesis holds then the curves should all be parallel. The test results

compare well with the predicted except for the two cases of the largest constrained stretch k2 ¼ 3:36 for the

3% sulphur rubber and k2 ¼ 3:38 for the 5% sulphur rubber. Vangerko and Treloar (1978) observed that

the value of k1 for the equi-biaxial stress state 111p � 122p ¼ 0, should be equal to the maintained stretch k2.
For the cases k2 ¼ 3:36 for the 3% sulphur rubber and k2 ¼ 3:38 for the 5% sulphur rubber, the test results
for k1 for which 111p � 122p ¼ 0, were not identical to the maintained stretch. This supports the contention

that stress-relaxation has effected the results for the largest maintained stretches and that the Valanis–

Landel hypothesis is supported by the experimental results.
8. Compressible materials

8.1. High hydrostatic pressure

The strain energy density model presented in Eq. (18) has been compared to experiments carried out at

very high hydrostatic pressures in Attard (2003) to investigate the appropriateness of the compressibility
component of the proposed strain energy density. The results presented in Attard (2003) will be summa-
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rized here. In hydrostatic compression tests performed by Adams and Gibson (1930) and Bridgman (1933,

1935, 1945) results were achieved down to values of J of the order of 0.8 (see Ogden, 1997). A three

parameter (A1 ¼ G, K1 ¼ K, K2) strain energy density expression for compressible materials was considered

in Attard (2003) and detailed in the following equation:
U ¼ 1=2GðI1 � 3Þ þ 1=2Kðln JÞ2 þ 1=4K2ðln JÞ4 � G ln J ð43Þ

Assuming that under a hydrostatic pressure we make take k1 ¼ k2 ¼ k3 ¼ J 1=3, the general form of the

hydrostatic pressure ph can then be derived from Eq. (29) as:
Jph ¼
Xr
n¼1



AnJ 2n=3 � BnJ�2n=3

�
þ
Xs
n¼1

Knðln JÞ2n�1 ð44Þ
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For the three parameter model considered here we have
Jph ¼ GðJ 2=3 � 1Þ þ Kðln JÞ þ K2ðln JÞ3 ð45Þ
Based on the experimental results for the compressibility of sodium and N-amyl iodide of Bridgman (1935,

1933), Rubber ‘‘A’’ of Adams and Gibson (1930) and Goodrich D-402 and Koroseal of Bridgman (1945),

material parameters were determined and are listed in Table 1. Fig. 10 shows a good comparison between

the model predictions with the experimental results.
8.2. Uniaxial tension––volume change in rubber

Attard (2003) investigated the use of the proposed strain energy density to predict volume change under

uniaxial tension. The experimental work of Penn (1970) was studied. This example will be reexamined here.

Penn (1970) measured the volume change of vulcanized natural gum rubber under uniaxial tension. The
stress versus stretch data showed the opposite curvature to that demonstrated by the volume change versus



Table 1

Material parameters

Material parameter A1 ¼ G K (GPa) K1 ¼ K (GPa) K2=K1

Sodium 3.333 GPa 6.3 4.078 11.12

N-amyl iodide 0 1.73 1.73 15.87

Rubber ‘‘A’’ 0 5.2 5.2 44.43

Goodrich D-402 0 3.55 3.55 48.02

Koroseal 0 2.63 2.63 48.02
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stretch data (refer to Figs. 11 and 12). At stretches above 1.5 the ‘‘two curves deviate significantly when the
volume change becomes concave downward while the stress curves upward’’. Penn (1970) argued that

because of this deviation the strain energy density could not be decomposed into the sum of an incom-

pressible and compressible component.
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Attard (2003) used a four parameter strain energy density for this example given by
U ¼ 1=2A1trðC� IÞ þ 1=2B1trðC�1 � IÞ þ 1=4A2trðC2 � IÞ þ 1=2K1ðln JÞ2 � ðA1 þ A2 � B1Þ ln J ð46Þ
The Lagrangian physical principal normal and lateral stresses (s22p ¼ s33p ¼ 0) based on the four parameter
model are therefore
s11p k1 ¼ A1ðk2i � 1Þ þ A2ðk4i � 1Þ � B1ðk�2
i � 1Þ þ K1 ln J ð47Þ
0 ¼ s22p k2 ¼ A1ðk22 � 1Þ þ A2ðk42 � 1Þ � B1ðk�2
2 � 1Þ þ K1 ln J ð48Þ
Ehlers and Eipper (1998) who examined numerically the lateral strain under uniaxial loading for rubber and

rubber-like materials, they observed that certain formulations gave unphysical results. Plots of numerically

obtained longitudinal strain versus lateral strain showed unrealistic results as J ! 0. The lateral strain first

increased as the section was compressed but as the longitudinal strain approached )1 ðJ ! 0Þ, some

formulations predicted that the lateral strain would then contract and approach negative infinity. It can be

seen from Eq. (48) that as J ! 0, the lateral stretch behaviour predicted by the proposed formulation

behaves as one would expect with k2 ! þ1 (note K1, B1 and A2 are assumed to be positive). Eq. (48) also

reveals that as k1 ! þ1 the lateral stretch asymptotes towards zero k2 ! þ0 and the volume ratio ap-
proaches positive infinity J ! þ1.

The material parameter K1 was set to the bulk modulus estimated from Penn (1970) at 2000 MPa. Penn

(1970) quoted the Mooney constants as approximately 0.361 and 0.165. These correspond to parameters A1

and B1, respectively. The A1 parameter was set at 0.361 and the remaining two parameters (A2 and B1) were

estimated using the experimental data. Once the parameters were set, Eq. (48) was numerically solved for

the lateral stretch k2 for a given value of the longitudinal stretch k1. The longitudinal stress defined in Eq.

(47) was then calculated for the given longitudinal stretch k1 and estimated lateral stretch k2. The pre-

dictions of the model are compared to the experimental data of Penn (1970) in Figs. 11–13 and show
excellent agreement. Fig. 13 demonstrates no unrealistic results are obtained as k1 ! 1.
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8.3. Uniaxial tension––volume change in polyurethane foam

In the previous example dealing with a natural gum rubber, there was a continuous volume increase with

increasing tension. This is generally the case for most compressible materials and the proposed hyperelastic
model is based on this premise. The exception seems to be for cellular solids such as polyurethane or open-

cell elastomeric foams. Such foams have wide practical applications including cushioning, energy

absorption and as noise barriers. Continuing volume dilation has been observed for some polyurethane

foams under tension (see Blatz and Ko, 1962). However, uniaxial tension tests carried out by El-Ratal and
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Mallick (1996) on a commercial and seat type foam showed an initial increase in volume under tension, but

once a maximum was obtained there was volume decrease. The loading during the tests was discontinued

when signs appeared of possible tearing. The longitudinal stress versus stretch relationship was highly

nonlinear as can be seen in Fig. 14 and has a very different behaviour to that of the natural gum rubber

studied by Penn (1970). The proposed hyperelastic model was applied to the uniaxial tension test results of
El-Ratal and Mallick (1996). Others to model the test results of El-Ratal and Mallick (1996) have been

Jemiolo and Turteltaub (2000) and Murphy and Rogerson (2002). Jemiolo and Turteltaub (2000) presented

a parametric study based on a modified elastic strain energy density derived from Ogden’s (1997) model.
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Murphy and Rogerson (2002) extended Blatz and Ko (1962) hypothesis of a power law relationship be-

tween the longitudinal stretch and the lateral stretch for the case of uniaxial tension.

To model the two types of foam, a four parameter model (A1;A2;A3 and K1) was employed here. The

equations for the Lagrangian physical principal normal stresses are:
Table

Materi

Mat

A1

A2

A3

K1
s11p k1 ¼ A1ðk2i � 1Þ þ A2ðk4i � 1Þ þ A3ðk6i � 1Þ þ K1 ln J ð49Þ

0 ¼ s22p k2 ¼ A1ðk22 � 1Þ þ A2ðk42 � 1Þ þ A3ðk62 � 1Þ þ K1 ln J ð50Þ
A least squares fit was used to select the material parameters which are given in Table 2. The same

numerical approach as in the previous example was employed to solve for the longitudinal stress, and the
longitudinal and lateral stretches. Fig. 14 shows a comparison of the experimental stress versus stretch

results with those predicted from the hyperelastic model. The comparison is reasonable. Fig. 15 compares

the lateral stretch versus longitudinal stretch results. Again one could ascertain that the comparison is

reasonable although one would need compression data to further verify the model.

The volume change predicted by the proposed hyperelastic model as shown in Fig. 16, shows a trend

which is not evident in the experimental results for stretches close to those beyond the maximum measured

in the experiments. In the test results, the volume change shows an increase and then a decrease from a

maximum. The proposed hyperelastic model also follows this trend but then shows a steady increase from a
minimum. The proposed hyperelastic model with the parameters chosen to model this experiment predicted
2
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that as k1 ! þ1 the lateral stretch asymptotes towards zero k2 ! þ0 and the volume ratio approaches

positive infinity J ! þ1. An opposite trend is observed if one looks at the Poisson’s ratio defined by

lðk1Þ ¼ k2�1
1�k1

. Fig. 17 shows a comparison of the Poisson’s ratio. The test results show an increasing Pois-

son’s ratio simulated correctly by the hyperelastic model. The proposed model, however, shows a maximum

Poisson’s ratio and then a continuing decrease. Blatz and Ko (1962) suggested that for a highly nonlinear

material it is more appropriate to define an apparent Poisson’s ratio given by
l ¼ � lnðk2Þ
lnðk1Þ

ð51Þ
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.6            0.8            1             1.2            1.4           1.6           1.8             2

λ 1

µ(
λ 1

)

El-Ratal & Mallick 1996
Seat Foam
El-Ratal & Mallick 1996
Commercial Foam
Proposed Model

Proposed Model

Fig. 17. Comparison of Poisson’s ratio versus longitudinal stretch.



-0.16

-0.11

-0.06

-0.01

0.04

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

ln(λ1)

ln
( λ

2)

El-Ratal & Mallick 1996 Seat
Foam
El-Ratal & Mallick 1996
Commercial Foam
Penn 1970

Proposed Model

Proposed Model

Proposed Model

Fig. 18. Logarithmic Plot of Lateral Stretch versus Longitudinal Stretch.

M.M. Attard, G.W. Hunt / International Journal of Solids and Structures 41 (2004) 5327–5350 5347
A logarithmic plot of the longitudinal and lateral stretches would then show a linear relationship with a

constant slope and pass through the origin. The results of Penn (1970) for the natural gum rubber show this

trend as can be seen in Fig. 18. The apparent Poisson’s ratio based on Eq. (51) for the two foams is also

plotted in Fig. 18. The apparent Poisson’s ratio for the two foams do not show a linear relationship but are

highly nonlinear. The comparison with the proposed model for the apparent Poisson’s ratio, however

shows good agreement. The proposed model does fit the experimental results well for the range of tensile

stretches tested but shows trends outside this range which can only be verified by further testing. Com-

pression tests coupled with uniaxial tension on the same foam materials would help verify the proposed
model and the material parameters chosen. Jemiolo and Turteltaub (2000) did provided extrapolated

compression results for the foams tested by El-Ratal and Mallick (1996) but these have not been used here

as they were not direct experimental results.
9. Conclusions

The strain energy density function for isotropic higher order elasticity developed in Attard (2003) has

been extended here by deriving the higher order constitutive relationships for the second Piola Kirchhoff

and Eulerian stress tensors as well as for their physical counterparts. General constitutive relationships have

also been derived for the principal Lagrangian and Eulerian stresses in terms of the principal stretches. The

strain energy density function is decomposed into a compressibility component being a generalization of the

Simo and Pister (1984) proposal for neo-Hookean elasticity, and an incompressibility component being the
generalized Mooney expression. Fundamental to the present proposal is the postulate that interaction or

coupling between principal stresses only comes about through the compressibility component of the strain

energy density function. In essence, the incompressibility component satisfies the Valanis–Landel

hypothesis that the strain energy density for incompressible materials should be capable of representation

as the sum of three separate but identical functions of each of the individual principal stretches. Vangerko

and Treloar (1978) were able to test this hypothesis experimentally by applying large biaxial stretches on

two batches of rubber. The predictions based on the proposed strain energy density compared very well

with Vangerko’s and Treloar’s test results. Discrepancies could be explained by noting that stress-relaxation
was present at the largest maintained stretches. Several experimental results for incompressible rubber-like
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materials under homogeneous strain were also compared to the predictions of the proposed model and

showed very good agreement.

Predictions for compressible materials under high hydrostatic compression were also good. The uniaxial

tension experimental results of Penn (1970) involved measurements of stress versus stretches and volume
changes in natural gum rubber. The proposed model compared well with the test results. The final com-

parison involved the tests conducted by El-Ratal and Mallick (1996) on two types of polyurethane foam

under large deformation uniaxial tension. The volume change in the foams initially increased under tension

and then showed a steady decrease with increasing tension. The proposed hyperelastic model could predict

this response, as well as matching the stress versus stretch relationships. The hyperelastic model however

predicted that eventually the volume change must increase with increasing tension so that as the longitu-

dinal stretch approaches infinity(k1 ! þ1) the lateral stretch asymptotes towards zero (k2 ! þ0) and the

volume ratio approaches positive infinity (J ! þ1). Further verification of the compressibility component
of the proposed strain energy density function would be helped with the availability of compression and

tension tests on the same foam material with measurements of volume changes at large longitudinal stretch.
Appendix A

Here we derive the expressions for the stresses for the common types of experiments performed on

incompressible materials such as rubber under homogeneous strain with 133p ¼ 0 and k3 ¼ 1
k1k2

.

A.1. Uniaxial tension-compression

An incompressible material is stretched in the 1 direction with the lateral stresses 122p and 133p both zero.

From Eq. (34) we can conclude that k2 ¼ 1=
ffiffiffiffiffi
k1

p
and therefore the longitudinal stress derived using Eq. (33)

is:
111p ¼ s11p k1 ¼
Xr
n¼1

Anðk2n1 � k�n
1 Þ � Bnðk�2n

1 � kn1Þ ðA:1Þ
A.2. Equi-biaxial tension-compression

An incompressible material is stretched in two orthogonal directions 1 and 2. Hence k1 ¼ k2 and

111p ¼ 122p . Substituting into Eqs. (33) and (34) gives
111p ¼ s11p k1 ¼
Xr
n¼1

Anðk2n1 � k�4n
1 Þ � Bnðk�2n

1 � k4n1 Þ ðA:2Þ
A.3. Pure shear

This stress state can be modeled by subjecting a material to biaxial tension but with one of the principal

stretches constrained to a fixed value of unity. Hence substituting k2 ¼ 1 into Eqs. (33) and (34) yields:
111p ¼ s11p k1 ¼
Xr
n¼1

ðAn þ BnÞðk2n1 � ðk1Þ�2nÞ ðA:3Þ

122p ¼ s22p ¼
Xr
n¼1

Anð1� ðk1Þ�2nÞ � Bnð1� ðk1Þ2nÞ ðA:4Þ
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